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Abstract

Interpretation of evoked response potentials is complicated by the extensive superposition of multiple

electrical  events.   The most common approach to disentangling these features is  principal  components

analysis (PCA).  Critics have demonstrated a number of caveats that complicate interpretation, notably

misallocation of variance and latency jitter.  This paper describes some further caveats to PCA as well as

using  simulations  to  evaluate  three  potential  methods  for  addressing  them:  parallel  analysis,   oblique

rotations, and spatial PCA.  An improved simulation model is introduced for examining these issues.  It is

concluded that PCA is an essential statistical tool for event-related potential analysis, but only if applied

appropriately.

Descriptors: principal components analysis, event-related potentials
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Addressing Misallocation of Variance in Principal Components Analysis of Evoked Potentials

Joseph Dien

Problems of Superposition

The superposition of activity volume-conducted from multiple regions of brain tissue has become an 

important obstacle to localizing evoked potentials.  While a number of algorithms have been developed to 

solve this so-called inverse problem, overlapping events can cause significant errors in localization 

procedures (Zhang & Jewett, 1993). These procedures can also suffer when the number of sources is 

unknown as is usually the case (Achim, Richer & Saint-Hilaire, 1991).  More generally, this problem of 

superposition is a challenge for all researchers seeking to interpret evoked potentials, whether for 

localization purposes or as an index of neurocognitive processes.

One  method  that  is  sometimes  used  to  disentangle  these  portions  of  the  waveform  is  principal

components analysis (PCA).  PCA is a multivariate technique for uncovering latent factors responsible for

patterns of covariance in a set of variables  (Gorsuch, 1983).  Although localization algorithms  (Scherg,

1990) often include PCA in some form, applying it as a separate pre-processing stage can allow it to be

more effectively applied and its success independently evaluated.  In particular, such a two-step process

largely reduces the number of judgments necessary for modeling a dataset to that of how many factors

(dipoles) to retain.  The utility of this method was recently demonstrated with an auditory attention dataset

(Dien, Tucker, Potts & Hartry, 1997).  This paper will describe three refinements to this technique.  To test

these techniques, an improved simulation model will be presented.  The results are of potential use to any

analysis ERP data.

Temporal PCA

Temporal  PCA  repeatedly  fits  a  regression  line  that  accounts  for  the  most  variance  possible,

subtracting this variance and then fitting a new line to the residuals.  Each such line constitutes a factor and
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the correlations of the variables with a given factor are provided by the factor loadings.  In the classical

PCA of event-related potential (ERP) data (temporal PCA) the variables are the recorded potential at a

given time point of the recording epoch (Curry et al., 1983; Donchin & Heffley, 1979; Möcks & Verleger,

1991), as shown in Table 1.  Ideally,  since the ERP components are the major source of covarying time

points, this procedure should yield factors that correspond to each component.

_______________________________________________

Insert Table 1 about here

_______________________________________________

For  each  observation  (raw  waveform),  temporal  PCA  will  generate  numbers  representing  the

amplitudes of the latent variables (factor scores).  The topography of each factor is encoded by the mean

amplitude of its factor scores at each site.  One can use this information to reproduce the portion of an

observation’s waveform represented by a given factor by multiplying the time point factor loadings by the

observation’s factor score and then multiplying each time point by its standard deviation (Dien et al., 1997).

See the appendix for a simple proof.

Limitations of Temporal PCA

Temporal PCA has three major issues: 1) Retention criteria, 2) factor interactions, and 3) latency jitters

(although others have been noted, c.f.,. Hunt, 1985).  The first issue arises because PCA requires the analyst

to decide how many of the factors contain interpretable signal and should therefore be retained.  Retaining

too many degrades the solution due to retained noise variance and retaining too little warps the solution

(Wood, Tataryn & Gorsuch, 1996), producing misallocation.

The  second issue,  factor  interactions,  occurs  when  the  factor  solution  for  one  component  suffers

interference  from  the  factor  solution  of  another  component.   Such  interactions  arise  from  rotational

indeterminacy.  To take a simple case, let us consider a dataset that consists of waveforms with only a

P300, of varying amplitude but constant latency.  In this case, a single latent waveform would suffice to
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model the dataset (suitably weighted for each observation by a factor score) and there is no indeterminacy.

The difficulty can be seen for a second dataset in which there is both a P2 and a P300.  In this example

dataset, one condition produces a P2 alone, a second condition produces a P300 alone, and a third condition

produces both.  Ideally, the dataset could be accounted for by two factors, one describing the time points

involved in the P2 and another describing the time points involved in the P300.

However,  it  would  be  equally  possible,  and  mathematically  equivalent,  to  describe  the  observed

waveforms with a latent waveform that describes the extent to which the two features covary for a given

observation (consisting of both a P2 and a P300) and a second latent waveform that describes the extent to

which the two features differ for a given observation (consisting of a P2 and a P300 of opposite sign).

Summed together with the proper weights (factor scores), these two latent waveforms generate the observed

waveforms as easily as a P2 and a P300 latent waveform could, as shown by Figure 1.  For example, an

observation with only a P2 could be modeled by a difference factor weighted such that its P300 segment

cancels out that of the other factor, leaving only the P2.  One could also generate any number of pairs of

latent waveforms intermediate between these two extremes.  The problem of rotational indeterminacy is the

uncertainty which of these countless possible alternative pairs of statistical waveforms best reflects the real-

world electrical waveforms.  It is important to keep in mind that this issue is a problem for peak measures

as well.

Rotation  procedures  attempt  to  address  this  indeterminacy.   The  rotation  most  commonly  used,

Varimax (Kaiser, 1958), finds the set of equivalent waveforms that maximize the importance (loading) of

the time points that are large for the factor and minimize time points that are small (by maximizing the sum

of the fourth power of the loadings).  This criterion has the value of rotating away from solutions that have

only  moderate  loadings,  presumably  spread  across  multiple  components.   To  the  extent  that  ERP

components peak at different time points and have relatively focal time courses, this criterion should find

factors that approximate the true latent waveforms.  This is reasonable because, for the most part, ERP

components appear to be monophasic.
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Rotation procedures do not necessarily resolve indeterminacy correctly.  In an influential paper, it was

demonstrated  that  rotational  indeterminacy  can  result  in  condition  effects  being  misallocated  to  an

overlapping factor (Wood & McCarthy, 1984).  Ironically, although this paper is most frequently cited by

critics of this technique, these authors actually advocated its  use.   Their conclusion was that  although

misallocation of variance is a problem for PCA, it is also a problem for other measurement techniques as

well.  Peak amplitude measures, for example, will also confound the effects of overlapping components.

Indeed, they stated that, "Other approaches to ERP analysis, measurement of peak amplitudes and latencies

for example, are no less subject to the problem of component overlap than PCA; they simply make it easier

to ignore by not representing it explicitly," p. 258.  If nothing else, PCA can alert the researcher to the

presence of overlapping components even when it does not resolve them correctly.

Although  Wood  and  McCarthy  (1984)  concluded  that  component  overlap  is  the  cause  of  such

misallocation, a reanalysis of their simulation dataset resulted in the conclusion that the misallocation was

due to an inadvertent correlation between the two components rather than due to their overlap (Chapman &

McCrary, 1995).  When the correlation was removed, it was reported that the misallocation was eliminated

even though the components were still overlapping.  Some simulation data has been presented that seems to

suggest that correlated components are only a problem for overlapping components (Hunt, 1985) but it is

not clear why this should be.  A goal of this paper is to resolve these divergent conclusions.

A point  not  made by  Wood and McCarthy (1984)  is  that  misallocation of  variance can  result  in

components being missed entirely.  Factors are defined as patterns of correlations (or covariances) between

time points without regard to what the source of these correlations are.   A single factor can therefore

describe multiple ERP components as long as they have identical time courses (Möcks & Verleger, 1991).

If two components differ in time course only to a small extent, they may be described by a large factor that

encompasses their common time course and a small factor that describes their differences.  If this small

factor is then obscured by the clutter of random noise, it may appear that there is only one factor rather than

two.  One might say that one component has been entirely misallocated to another.
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The third issue is that of latency jitter, which is variability in the time course of a component across

trials.  If a given ERP component, such as the P300, occurs at two different latencies in two different

conditions, then a single latent waveform will not be able to account for both observed waveforms.  Ideally,

the dataset could be accounted for by two factors, one wholly describing the P300 at the first latency and

one wholly describing the P300 at the second latency.  This situation may result in a single latent waveform

that captures the time points that are activated by both latencies and a second that captures the difference

between the two latencies.  Thus, a feature that shifts across the individuals or the conditions can result in

an  extra  principal  component  resembling  the  time-derivative  of  the  feature's  behavior  (Möcks,  1986).

Alternatively, it might produce two factors representing the two different latency versions.  A given factor

may represent latency jitter in a component already modeled by a second factor rather than a distinct ERP

component.  This is, again, an issue common to peak measurement techniques.  A negativity that appears at

two different times in two different conditions may in fact be due to two distinct ERP components or it may

be due to a single jittered component  (c.f., Polich, 1985).  The PCA is merely making this issue more

apparent.

These difficulties with misallocation and jitter can be addressed via parallel analysis, oblique rotations,

and spatial PCA respectively.  After the explication of these three techniques, a series of simulations will

test their utility.

Parallel Analysis

Up to a point, rotation procedures can address such cases involving difference factors due to overlap or

latency jitter.  However, the original two components can only be regenerated if the difference factor is

retained.  PCA will usually produce as many factors as there are variables, mostly representing random

noise.  For parsimony’s sake most of the factors are dropped, retaining only the substantive factors.  It is

therefore critical that the difference factors representing overlapping components are retained.  Retaining

too many factors degrades the solution due to retained noise variance and retaining too few warps the

solution (Wood et al., 1996), producing misallocation.
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  Unfortunately, the guidelines for determining the number of factors to retain are imprecise.  The most

common method, the Kaiser eigenvalue-greater-than-one rule (Kaiser, 1960), has been strongly criticized

for providing inferior estimates  (Zwick & Velicer, 1986).  The second most common decision rule, the

Scree  test  (Cattell,  1966b),  is  more  accurate  but  contains  a  substantial  subjective  component.   It  is

predicated on the fact that a PCA of a random dataset will produce a set of factors with random size.  When

ordered by size (eigenvalues), they will produce a smoothly descending slope.  Factors that are larger than

predicted by this steady slope are most likely to have interpretable signal in them.  The scree test involves

graphing this set of eigenvalues and looking for the "elbow," the point where the factors begin rising above

the slope.  Simulations indicate that the last point still on the slope, the corner of the elbow, should also be

included (Cattell & Jaspers, 1967).  The problem is that scree plots of ERP data typically contain multiple

elbows, some of which are quite subtle, producing ambiguity as to where the scree starts.

In a comparison of five methods for determining how many factors to retain (Zwick & Velicer, 1986),

parallel analysis (Horn, 1965) proved to be the most effective.  In this test, PCA is conducted on a random

dataset of the same size as the dataset of interest, producing an assortment of random sized factors.  When

charted in order of size (eigenvalues), this produces a slope.  This slope can be used as a baseline against

which to compare the factors from the PCA of the experimental dataset.  The number of factors that are

larger than obtained from the purely random dataset is the number to retain for further analysis.  This test

therefore uses the same logic as the scree test but removes the guesswork about what constitutes the noise

level.  When applied to ERP datasets, a complication is that even after averaging the background noise is

autocorrelated across the variables.  The autocorrelated noise causes factors to appear that are larger than

would be expected from a purely random dataset even in the absence of evoked potentials.  This point may

be  addressed  by  conducting  the  averaging  procedure  on  the  dataset  with  every  other  trial  inverted,

producing what has been termed the +/- reference (Schimmel, 1967; Wong & Bickford, 1980).  In this case,

the evoked potential should cancel out leaving only the background noise.  This inversion dataset should

then provide an optimal comparison point for the parallel analysis.
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Oblique Rotation

One possible way to address factor interactions is to use oblique rotations.  As noted in an important

critique of the application of PCA to ERPs (Hunt, 1985), distortions can occur when assumptions of the

statistical analysis are violated.  An important assumption of PCA and varimax is orthogonality, that the

latent variables are uncorrelated.  The use of an oblique rotation can address violations of this assumption

by allowing factors  to be correlated.  It  has  been previously suggested that  an oblique rotation might

provide  better  results  and  was  used  in  passing  to  demonstrate  that  two  factors  were  correlated  in  a

simulation dataset (Chapman & McCrary, 1995).  The issue was not further pursued or evaluated however.

One of the better oblique rotations (Gorsuch, 1970) is the Promax procedure (Hendrickson & White,

1964), in which a Varimax rotation is relaxed to allow correlation among the factors.  As described earlier,

in the Varimax procedure the factor vectors are rotated in variable space such that loadings of the variables

on the factors are as extreme (either zero or high absolute value) as possible.  This results in factors that are

restricted to as few variables (time samples in temporal PCA) as possible.  This operation is limited by an

orthogonality constraint; variance cannot be shared by factors.  Factors representing correlated components

can be distorted when their shared variance is allocated to other factors.

Promax pursues the Varimax criterion without regard for orthogonality; in effect, allowing multiple

factors to share ambiguous variance.  Although this approach loses the mathematical simplicity of strict

orthogonality, it could allow the individual factors to more closely approximate the underlying components,

to the extent that the Varimax criterion is valid.  Using the Varimax solution as the starting point, the

Promax solution allows factors to become correlated, a condition more suited to brain processes than strict

orthogonality.  It does so by adjusting each factor in turn to more strongly follow the varimax criterion for

simple structure, but this time without regard for maintaining orthogonality to the other factors.  Note that

the Promax operation is carried out after the retention step so it  will  not  affect  the number of factors

retained, only their characterization.
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Spatial PCA

The high-density montages afforded by advances in current technology have made another approach,

spatial  PCA, an option for dealing with latency jitter.   Although studies using spatial  PCA have been

published previously  (Donchin, Spencer & Dien, 1997; Duffy et al., 1990; Kavanagh, Darcey & Fender,

1976; Skrandies & Lehmann, 1982), these consisted of brief demonstrations.  To evaluate the utility of this

method, in-depth examination is necessary.

In a spatial PCA, the variables are the microvolts measured at a given channel and the time points serve

as observations, as shown in Table 2.  The resulting factors consist of topographical patterns with each

factor loading describing the weighting of an individual channel.  The factor scores indicate the amplitude

of these topographical patterns across time.  This arrangement will produce a factor solution that differs

from a temporal PCA due to emphasis on the spatial variance and due to the rotation procedure.

_______________________________________________

Insert Table 2 about here

_______________________________________________

The first reason spatial PCA will differ from temporal PCA lies in the role of four different sources of

variance in the data.  These four sources are temporal (the waveforms), spatial (topographical patterns),

condition (experimental  effects),  and participant (individual differences).   In temporal  PCA the dataset

consists of waveforms from all the scalp sites from all the conditions from all the participants.  In this case,

the PCA is conducted on the combination of the temporal variance and the temporal covariances produced

by the effects of the site, effects of the conditions, and effects of individual differences.  This is appropriate

for an ERP dataset since a component  should be subject to all three influences.  These are also some of the

sources of information by which an ERP analyst determines what is a component (Picton & Stuss, 1980).

The temporal PCA process helps summarize the information about temporal patterns related to these three

sources.  Spatial PCA represents the complementary case of analyzing spatial variance and covariance.
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It is not correct to say that the difference between spatial and temporal PCA is the same as that between

R analysis (in psychometrics, tests as variables and subjects as observations) and Q analysis (subjects as

variables and tests as observations) (Cattell, 1966a).  Regular PCA operates along two modes (variables and

observations).   In a simple case where there is only temporal and spatial variance, it does not matter which

is used as the variables in this respect.  For a temporal PCA, two components with the same time course

have the same profile and cannot be distinguished, as noted earlier.  Two components could have different

time courses but the same spatial distribution and would again not be distinguishable as they would covary

absolutely.  At whatever site the set of time points affected by one component was large, the time points

affected by the other component would be large too.  Wherever the former set was small, so would the

latter set.  The result would be a single bimodal factor.  If two components were identical either spatially or

temporally, it would not matter whether spatial or temporal PCA was used.

However, in real datasets the observations mode is potentially disambiguated by two other sources of

variance, individual differences and condition effects.  For example, in a temporal PCA, two components

with different time courses but identical spatial distributions will not absolutely covary if one is amplified

by attention and the other is not.  A spatial PCA is no longer simply a transpose of a temporal PCA.

Whichever source of variance contributes to the observations mode has the benefit of the two other sources

of variance for disambiguating components but is therefore also diluted in its effects on the final factor

solution.  Thus, spatial PCA will be most effective at separating components with similar time courses

although temporal PCA will be most effective at separating components with similar scalp topographies.

Spatial  PCA will  also  produce  different  results  due  to  the  effects  of  the  rotation  procedure.   As

described earlier, Varimax finds the rotation that minimizes the number of variables that loading on the

factors.  In a temporal PCA, this property will favor factor solutions with temporally delimited waveforms.

In a spatial PCA, this property will favor factor solutions with spatially delimited waveforms.

Temporal  and  spatial  PCAs  have  complementary  strengths.   A  spatial  PCA  can  characterize

components that are temporally overlapping or jittered whereas a temporal PCA can identify components
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that are spatially overlapping or jittered.  For example, two components that occur at nearly the same time

but have very different scalp distributions might be characterized by a temporal PCA as a single substantive

factor (with the small difference variance lost in the noise factors) while a spatial PCA would characterize

them with two different equal-sized interpretable factors.  Additionally, a temporal PCA keeps the time

course constant but allows the spatial distribution to vary, allowing the distribution of different conditions

to be compared.  In contrast, a spatial PCA keeps the spatial distribution constant but allows the temporal

course  to  vary,  so  different  conditions  may  be  compared  temporally.   Thus,  each  type  should  detect

components that the other misses, as well as providing information about condition changes that the other

keeps invariant.

  In general, a temporal PCA will allow stronger inferences since all spatial factors necessarily overlap

and potentially suffer from misallocation.  Balancing this methodological issue is the fact that, to the extent

that ERP components are defined as reflecting different neural functions  (however, see Picton & Stuss,

1980), components are more likely to have unique spatial signatures than temporal signatures.

While the basic principles elucidated suggest these three techniques should be useful adjuncts to the

PCA  technique,  simulations  are  necessary  to  validate  the  conclusions  and  to  detect  unforeseen

complications.  Simulations were therefore carried out to test their effectiveness.  In order to improve upon

the simulation dataset  first  introduced by Wood and McCarthy (1984),  a  new set  of simulations were

constructed  which  permit  controlled  comparison  of  the  effects  of  component  overlap  and  component

correlation, as well as the individual roles of spatial, condition, and subject variance.
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Simulations of Parallel Test

Methods

Test datasets were constructed to represent ten participants in two conditions, each with 65 channels

and 65 time points.  Two artificial components were constructed from half sine cycles, one with a short

period like that of the P2 component(s) and one with a long period like that of the P3 component(s).  These

two components overlap such that when a correlation is computed between their loadings (treating each

pair of loadings as an observation),  r is  approximately zero.  To maximize comparability between the

temporal and spatial dimensions, the test montage was conceptualized as being a midline montage of 65

electrodes.  While the spatial layout of the electrodes is irrelevant to the mathematics of the PCA procedure,

this makes it reasonable to display topographies as a linear ordered set in the same manner as the temporal

patterns.  Figure 2 shows that the half sine cycles can comprise the topography of the components as well,

with the short period cycle representing a focal component like that of the P2 and the long period cycle

representing a diffuse component like that of the P3.  These spatial and temporal weights varied from zero

to one.  A given data point consisted of the product of the two weights and then arbitrarily multiplied by

four microvolts.

_______________________________________________

Insert Figure 2 about here

_______________________________________________

Random variability in the dataset is represented by the background EEG of ten subjects from a real

dataset  (Dien,  in  press) and was generated by using the +/- reference  (Schimmel,  1967).   To further

minimize time-locked evoked potentials, the 65 time points were taken from the baseline period plus 76

msec. post-stimulus.  In order to keep the model simple, no other random variance was included in the

model.
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Results and Discussion

A base matrix was constructed containing only the two components and no background EEG.  When

this  base data matrix  was factored,  only two non-zero eigenvalues  were obtained,  confirming that  this

artificial dataset has only two components.  The background EEG was then added to the base data matrix,

producing the final dataset.   Figure 3 illustrates how dataset  was then factored and the resulting scree

compared to that of the background EEG alone.  A notable increase is seen in three of the eigenvalues

although small increases are seen in the remaining factors as well.

_______________________________________________

Insert Figure 3 about here

_______________________________________________

Following the parallel test criteria, four factors were retained (the three plus the elbow) and rotated

using the promax algorithm.  For comparison’s sake, the background EEG was also factored, retaining four

factors.   Figure 4a shows that  the waveforms of  the four background EEG factors  are quite  coherent,

verifying that the averaging process has left more than just random noise in the background.  Figure 4b of

the waveforms for the PCA of the background EEG + base data matrix shows that Components P3 and P2

were  indeed  mostly  recovered  along  with  two  noise  factors.   It  appears  that  Factors  1  and  4  of  the

background EEG may have been incorporated into the Factors characterizing P2 and P3 due to their similar

peak times, distorting the factors somewhat.  One can also infer that the reason more than two signal factors

were  indicated  by  the  parallel  test  is  that  some  of  the  variance  of  the  test  components  have  been

“misallocated” in this initial extraction.  Factor 2 shows a small bump coincident with the P2 peak in b, not

evident in a, which suggests it may have incorporated some of the P2 variance.  Likewise, Factor 3 show a

small dip coincident with the P3 peak in b, but not in a, that suggests is may have incorporated some of the

P3 variance.  Indeed, there is no reason in principle that misallocation cannot occur in the initial extraction.

On the other hand, four factors turns out to be an appropriate number to retain.  Figure 4c demonstrates

that if one retains only two factors, the P2 and P3 factors are distorted.  This is in line with reports that
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retaining too few factors can result in distorted results (Wood et al., 1996).  Figure 4d further shows that if

one retains six  factors the P2 and P3 factors  appear even cleaner,  adhering closer to  zero outside the

duration of the component.  These findings seem to suggest that the results of the parallel test should be

considered merely a higher bound for estimating the dimensionality of the evoked potential.  Moreover, it

appears  that  the  number  of  factors  retained  may  need  to  be  an  even  higher  number  since  features

contributed by the background EEG may cause distortions if not characterized by additional factors. 

_______________________________________________

Insert Figure 4 about here

_______________________________________________

Simulation Tests of Oblique Rotation

The goal of the next simulation test is to examine the effect of the oblique rotation, Promax, in the

presence of temporal overlap and component covariation.  In this manner, it is also hoped to resolve the

dispute between the opposing positions on their role in misallocation of variance (Chapman & McCrary,

1995; Wood & McCarthy, 1984).

Methods

For this next series of simulations, three temporal patterns were used.  The temporal patterns of the P2

and P3 patterns from the preceding test were used as well as a third (to be termed the P1 pattern) with the

same short duration as the P2 pattern but located earlier so as not to overlap with those of the P3 pattern.

The P1 and P2 patterns were used to produce the four possible combinations of having temporal and spatial

overlap/non-overlap with the P3 pattern.   Overlap in  the spatial  domain determines overall  correlation

between the components in a temporal PCA.  The P2 pattern results in a zero correlation with the P3 pattern

(overlap) while the P1 pattern (non-overlap) results in a -.3 correlation  (since the presence of one partially

predicts the absence of the other).
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The dataset was kept as simple as possible.  The basic data consisted of 65 variables (time points) at 65

observations (electrodes).  Since there has to be more observations than electrodes to avoid singularity

(which  interferes  with  computing  the  generalized  negative  inverse  used  to  calculate  the  factor  score

coefficients) these observations were doubled (representing two identical conditions, for simplicity’s sake).

Since simply doubling the data would not prevent the matrix from being singular, a very small random

noise term was added.  The noise term amounted to only about .5% of the average peak amplitude of the

signal (centered on zero) and was added to each data point in the data matrix.  One hundred datasets were

generated for each simulation.  In addition to the noise term, additional randomness was introduced (in the

interests of generalizability of the results) by varying each component amplitude within a +/-50% range.

Misallocation  of  variance  was  evaluated  in  terms  of  defective  reconstruction  of  the  components.

Effectiveness  of  component  reconstruction  was  quantified  by  measuring  the  correlation  between  the

original time course (or topography) and the corresponding factor using each time point (or electrode site)

as the observations.  The measure has the additional advantage that since correlations normalize the two

variables involved, the waveform amplitudes is controlled for.  The correlation was computed between the

varimax rotated P1/P2 factor (as the smaller component, it is expected to show misallocation more clearly)

and the original time course.  The 100 replications were then rank ordered according to the correlations and

the median (50th) simulation was selected as the most representative result for each of the simulations.

Results and Discussion

Simulation A is a zero temporal overlap, zero component correlation.  The correlations ranged from

1.000 to .9681 with a median of .9994. As Figure 5A presents, there is essentially no misallocation of

variance for either time course or topography, with only a subtle dip suggesting some spillover from the P3

component.

In simulation B, there is temporal overlap and negative correlation between the components, one or

both of which should produce misallocation of variance (Chapman & McCrary, 1995; Wood & McCarthy,

1984).   The  correlations  ranged  from .7370  to  1.000  with  a  median  of  .9949.   Even  with  this  high
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correlation,  Figure  5B reveals  a  notable  misallocation,  especially  in  the  topography.   Promax rotation

improves the fit slightly to a correlation of .9976.

To disentangle the effects of temporal overlap and component correlation, simulation C contains a

negative  correlation  but  no  temporal  overlap.   Correlations  range from .8522 to  .9979 with  a  median

of .9673, reflecting a notable spillover from the P3 component in both time course and topography as seen

in Figure 5C.  Promax essentially eliminates the distortion, improving the correlation to .9999.

To determine if the reverse can also cause distortion, simulation D contains temporal overlap but no

component correlation.  Correlations range from .8877 to 1.000 with a median of .9912, reflecting some

misallocation,  particularly in  the topography,  as Figure 5D shows.   Promax increased the time course

distortion to .9882 but decreased the topography distortion from .9648 to .9945, suggesting this rotation

does not reliably address temporal overlap.

_______________________________________________

Insert Figure 5 about here

_______________________________________________

These results indicate that both McCarthy and Wood (1984) and Chapman (1995) are correct.  At least

under some situations, both component overlap and component correlations can produce misallocation of

variance.  Only when both were absent (Simulation A) was there accurate reconstruction of the components

using the customary varimax rotation.

These results also suggest  that,  as Chapman suggested, an oblique rotation can indeed be helpful.

Although  it  had  mixed  effects  on  misallocation  due  to  temporal  overlap,  Simulation  C  shows  it  can

essentially  eliminate  misallocation  due  to  correlated  components.   Given  that  it  is  unlikely  that  most

components will have the exact  spatial overlap necessary to produce zero correlation, let  alone having

uncorrelated sources, such a property seems likely to be of use.
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Although this example focused on time course and topography with an eye towards localization efforts,

these findings are equally valid for misallocation of experimental effects.  When a component has condition

effects,  it  should maintain them when misallocated to  different  factors  as  demonstrated by Wood and

McCarthy (1984).

Simulation Tests of Spatial PCA

The final  simulation  test  is  intended to  contrast  the  characteristics  of  spatial  PCA with the  more

traditional temporal PCA.  From first principles, it is expected that spatial PCA should be able to separate

components in some situations that temporal PCA cannot.  It is also expected that temporal PCA should be

better suited to modeling topography changes and spatial PCA should be better suited for time course

changes.

Methods

Simulation  datasets  were  constructed  as  in  the  previous  series  using  just  the  P1  and  P3 patterns.

Jittered  versions  were  produced  by  shifting  waveforms  to  the  right  by  five  places.   Representative

replications were chosen arbitrarily by taking the correlation between the Factor 1 (promax rotated) time

course and correlating it with the P3 component time course and taking the replication with the median

value.  For simulations B-D, condition variance was introduced by doubling the size of the P1 component

in the 2nd condition.  For simulations E-H, jitter is introduced by shifting the appropriate pattern five

spaces in the 2nd condition.  Representative replications were chosen arbitrarily by choosing the one with

the median correlation between Factor One and the non-jittered P1.  In simulations E & G, whether the

jittered or non-jittered P1 gravitated to Factor One was random so for the median calculation only the

replications  where  Factor  One  reflects  the  non-jittered  P1  were  included  so  that  a  replication  most

representative of one of these groupings was selected rather than an outlier falling in between these two

groups.
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Results and Discussion

The first set of simulations help delineate one situation where a spatial PCA will dissociate components

more effectively than temporal PCA.  As already seen, at least with this dataset, a temporal PCA will

readily separate the two components when they differ in both temporal and spatial characteristics.

Figure 6A shows (as discussed earlier) that when the two components have the same spatial pattern,

temporal PCA cannot dissociate them since they will correlate 100%.  Factor 1 accounts for both the P1 and

P3  components  in  this  case  (>99.9999%  of  variance)  while  Factor  2  consists  of  incoherent  noise

(<00.0001% variance).  It is not clear why the topography of Factor 2 appears to reflect the topography of

the P3 component even though the time course appears random and may be a glitch prompted by the nearly

non-existent variance involved.

Figure 6B shows that even when two components have the same spatial pattern, temporal PCA can

dissociate them as long as there is some differential condition (or subject) variance.  In this case, although

the PCA was able to identify the dimensionality as being two (96.53% and 3.46% variance respectively),

the factors were quite distorted since the components were still highly correlated.

Figure 6C shows that when two components have the same temporal pattern, neither differing spatial

topography nor condition variance is sufficient for a temporal PCA to dissociate them.  Once again, the first

factor accounts for nearly all the variance (>99.9999%) while the second factor represents some residual

noise (<00.0001% variance).

Figure 6D demonstrates with this same dataset that a spatial PCA is able to dissociate the components,

although there was considerable misallocation of variance.  Factor One (96.27% variance) reflects the P3

component and some of the P1 while Factor Two (3.73% variance) characterizes the P1 component and

only some of the P3.
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_______________________________________________

Insert Figure 6 about here

_______________________________________________

The second set of simulations illustrate the performance of temporal and spatial PCA under temporal

and spatial jitter.  For simplicity’s sake, only a single component (the P1) was included in the simulation

datasets.  As has been demonstrated previously  (Möcks, 1986), Figure 7E shows that latency jitter in a

component can produce two factors (74.26% and 25.70% variance) in a temporal PCA.  

Figure 7F shows that a spatial PCA of this same dataset more meaningfully captures the components

with  just  one  factor  (99.96%  variance).   The  second  factor  is  inconsequential  (<00.0001%  variance)

although it has some coherence.

Figure 7G shows that spatial jitter can produce a multiple factor effect in a spatial PCA just as temporal

jitter does for temporal PCA.  The two factors account for 72.92% and 27.05% of the variance respectively.

Figure 7H illustrates that, unlike spatial PCA, a temporal PCA smoothly handles topography changes.

The first factor has 99.97% variance while the second is vanishingly small (<00.0001% variance).

_______________________________________________

Insert Figure 7 about here

_______________________________________________

These simulations support the predictions made in the introduction that temporal and spatial PCA have

complementary strengths and weaknesses.  For modeling components with nearly identical time courses or

with substantial latency jitter, spatial PCA may produce less misallocation problems.  On the other hand,

since electrical fields affect the entire head (to varying degrees), unlike in temporal PCA each factor has

loadings on every variable (site).  This means that misallocation of variance is much more likely to occur

since all components overlap.
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Conclusion

Whether  PCA  is  successful  at  parsing  components  depends  on  the  definition  of  “component.”

Unfortunately,  there is  no simple answer which is why components tend to be defined according to a

number  of  criteria  (Picton  &  Stuss,  1980),  forming  fuzzy  categories.   For  example,  a  strict  latency

definition would fail to categorize a component like the P300 which varies according to stimulus evaluation

time.  On the other hand, a strict topographical or source definition would fail to group together motor

potentials which will be different between fingers and toes, or even between different fingers, and yet are

roughly equivalent in function and characteristics.  A component, like any other theoretical construct, is

essentially an arbitrary category defined by researchers that supports experimentally and theoretically useful

generalizations that facilitate interpretation and communication.  If PCA produces factors that are useful

and generalizeable for the goals of the experiment, then it has been successful.  Useful can mean the factor

shows  coherent  condition  effects  and/or  is  readily  localizeable.   Generalizeable  means  the  factor  is

replicable and has convergent validity when compared to other analysis techniques or other sources of

information.

On the basis of these simulations, one can arrive at some recommendations for PCA of ERP data.  1)

Careful attention should be focused on the issue of how many factors to retain.  The parallel test may

provide some assistance but overall does not appear to provide much improvement over a simple scree test.

A more practical procedure may be to use the scree test to arrive at an initial estimate and then to determine

whether a solution with an additional four factors adds or changes the results in any substantive fashion.  2)

Promax appears to provide a substantial improvement over varimax and should be used in all analyses.  3)

Temporal PCA is useful when it is expected that the features of interest have spatial jitter or have less

temporal overlap than spatial overlap.  Spatial PCA is useful when it is expected that there is temporal jitter

or less spatial overlap than temporal.

Although improvements on PCA have been proposed (e.g., Bell & Sejnowski, 1995; Maier, Dagnelie,

Spekreijse & van Dijk, 1987; Mosher, 1992), in order to be useful they must have their limitations and
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strengths mapped out in the same manner as has been done for PCA in this and previous articles.  For

example, PCA has been generalized to 3-modes or more  (Kroonenberg, 1983; Tucker, 1963).  An early

application used the three modes of subject, conditions, and time points  (Donchin, Gerbrandt, Leifer &

Tucker, 1972).  More recently, it has been proposed using the modes of subjects, channels, and time points

(Möcks, 1988).  Its very strength of describing components in terms of a fixed time course and topography

is also its weakness as this means it has both the weakness of spatial PCA to spatial jitter (as in laterality

effects) and temporal PCA to temporal jitter (as in the P300).  It is not clear at this point how robust it

would be to misallocation of variance issues,  although it  appears to be promising in cases where both

spatial and temporal jitter is lacking (Achim & Marcantoni, 1997).  A recent extension to this technique

may be able to take latency jitter and stretching into account but remains a work in progress and is not yet

publicly  available  (Achim  &  Bouchard,  1997).   Likewise,  independent  components  analysis  (Bell  &

Sejnowski, 1995; Makeig, Jung, Bell, Ghahremani & Sejnowski, 1997) studies done thus far have been

applied in a fashion analagous to spatial PCA and should be evaluated accordingly.

In conclusion, both PCA methods provide useful information about the component structure of the

ERP.  It should also be apparent that the richness of the evoked potential, as revealed by PCA, cannot be

appreciated by a simple windowing procedure.  While concerns about misallocation of variance are valid,

to  avoid  therefore  the  use  of  PCA  is  to  kill  the  messenger  carrying  the  bad  news  that  coping  with

superposition  is  a  challenge  for  ERP  analyses  in  general.   Ideally,  one  should  use  experimental

manipulations to isolate components as best possible and then characterize the component structure of the

resulting  effects  with  the  appropriate  PCA.   ERP  studies  not  doing  so  should  have  to  justify  any

conclusions they make concerning componentry, particularly latency measures and neural generators.  Such

a PCA may also prove helpful with subsequent localization efforts.  With sufficient observations it could be

feasible to apply these techniques to functional MRI as well, separately or in conjunction with ERP data.
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Table Legends

TABLE 1.  Example of dataset for temporal PCA.  Variables consist of the voltage measured at each of t 

time points.  The observations consist of m waveforms (the waveforms measured at all the combinations of 

p participants, c conditions, and n channels).

TABLE 2.  Example of dataset for spatial PCA.  Variables consist of the voltage measured at each of n 

channels.  The observations consist of m topographies (the scalp patterns measured at all the combinations 

of p participants, c conditions, and t time points).  Note that the spatial PCA dataset is not simply the 

transpose of the temporal PCA dataset but rather the resultant of the separate transposition of each of the p 

x c blocks of  t time point by n channels.
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Tables

Table 1.

Time 1 Time 2 Time t

Waveform 1 (participant 1, condition 1,

channel 1)

0 µv 1 µv 1 µv

Waveform 2 (participant 1, condition 1,

channel 2)

0 µv 2 µv 2 µv

Waveform m (participant p, condition 

c, channel n)

3 µv 3 µv 0 µv

Table 2.

Chan 1 Chan 2 Chan n

Topography 1 (participant 1, condition 

1, time 1)

0 µv 0 µv 2 µv

Topography 2 (participant 1, condition 

1, time 2)

1 µv 2 µv 4 µv

Topography m (participant p, condition

c, time t)

1 µv 2 µv 0 µv
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Figure Captions

FIGURE 1.  Example of alternative factor solution that can account for the P2 and P3.  The ideal

solution consists of separate factors for each component that together can account for waveforms (rightmost

column)  consisting of the P2 alone, the P3 alone, and both together.  Because of rotational indeterminacy,

another pair of factors can also be generated (alternate solution) consisting of a contrast between the two

components and the combination of the two components that together can also account for the same three

recorded waveforms.  While mathematically equivalent, the electrophysiological literature clearly indicates

that the first solution is more plausible.
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FIGURE 2.  Artificial components for simulation studies.  The figure illustrates how the “P1” and “P3”

patterns can be used to form both the time course and the topography of a component, if the topography is

defined as amplitudes measured along a midline array down the center of the scalp.
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FIGURE 3.   Parallel  Test  simulation.   Chart  shows eigenvalues  of  Factors  1  through 17 for  both

background EEG and base data matrix + background EEG.  Although addition of signal has increased the

eigenvalues for all the factors, it has done so most for the first three.  Application of the scree criterion

indicates retention of the first four factors (the three factors plus one more).
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FIGURE 4.  Factor waveforms from parallel test simulation.  Factor loadings were multiplied by the

time point standard deviations to rescale them and then overplotted.  The corresponding factors in the four

different  analyses  were  given  the  same  line  type  to  facilitate  comparisons.   a)  Factors  from PCA of

background noise alone (4 factors retained to facilitate comparison with b).  b) Factors from PCA of data

matrix, retaining 4 factors as indicated by the parallel test.  c) Retaining only two factors results in distorted

characterization  of  P2  and  P3.   d)  Retaining  more  factors  than  indicated  by  parallel  test  (6  factors)

moderately improves reconstruction even more.
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FIGURE 5.  Results of promax simulation tests.  The results for the P1/P2 factor only are illustrated.

The horizontal figures represent the time course and the vertical figures represent the topography.  Results

are shown for both the varimax and promax rotations.  The original pattern is shown is gray and the factor

reconstruction is drawn in black, such that only deviations from the original pattern can be seen.  A) No
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temporal overlap or component correlation between the two components (P1 and P3) results in a good

reconstruction  of  the  P1.   B)  Both  temporal  overlap  and  component  correlation  between  the  two

components results in distortions .  C) Component correlation but no overlap results in distortion only for

the varimax rotation.  D) Temporal overlap but no component correlation results in distortion for both

rotations.

Addressing Misallocation - Dien (March 23rd, 1998) 33



FIGURE 6.  Results of spatial PCA simulation tests.  The results for the promax rotation only are

illustrated.   The  horizontal  figures  represent  the  time  course  and  the  vertical  figures  represent  the

topography.  Results are shown for both Factor One and Factor Two.  The original pattern is shown is gray

and the factor reconstruction is drawn in black, such that only deviations from the original pattern can be
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seen.  A) Components have same spatial pattern.  B) Components have same spatial pattern but differential

condition effect.  C) Components have same temporal pattern and differential condition effect.   D) Spatial

PCA in case of components with the same temporal pattern and differential condition effect.

FIGURE 7.  Results of jitter simulation tests.  The results for the promax rotation only are illustrated.

The horizontal figures represent the time course and the vertical figures represent the topography.  Results
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are shown for both Cell One and Cell Two.  Factor One is shown is black and Factor Two is in gray.

Waveforms indicate only the shape of the factors, not the amplitude.  A) Temporal PCA of component with

temporal jitter (different latencies in Cell 1 and Cell 2).  Factor 1 describes the component in Cell 1 and

Factor 2 describes the component in Cell 2.  B) Spatial PCA of component with temporal jitter.  Factor 1

describes  the  component  in  both  cells  while  Factor  2  is  essentially  non-existent.   C)  Spatial  PCA of

component  with  spatial  jitter  (different  topographies  in  Cell  1  and  Cell  2).   Factor  1  describes  the

component in Cell 1 and Factor 2 describes the component in Cell 2.   D) Spatial PCA of component with

temporal jitter.  Factor 1 describes the component in both cells while Factor 2 reflects essentially only

noise.
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Appendix

A simple proof, that the portion of the recorded waveform accounted for by a factor can be computed

by multiplying the factor loading by the factor score by the standard deviations of the variables, starts with

the fact that the relation between two variables can be expressed as:

(1) ZY=rZX

where r is the correlation coefficient and ZY and ZX are variables that have been standardized (p. 116,

Glass & Hopkins, 1984).

Keeping in mind that a factor loading is the correlation between a variable and the factor  (p. 599,

Tabachnick & Fidell, 1989), this means that:

(2) Zt = rZS

where Zt is a given time point variable (standardized), r is the factor loading, and Z S is the factor score

(standardized).  Since:

(3) Zt= (T - µ) / 

where  is the standard deviation of T and µ is the mean of T.   Rearranged, this is:

(4) (T - µ) =  Zt

substituting in (2) produces:

(5) T - µ = rZS

or

(6) T = rZS + µ 

Addressing Misallocation - Dien (March 23rd, 1998) 37



If one carried out this operation for each factor, added together the resulting latent waveforms, and then

added µ to the result, one would reconstitute the original raw waveform (p. 15, Jackson, 1991).  PCA is

therefore literally the process of decomposing the observed waveforms into inferred latent waveforms in

that the factor scores, factor loadings, variable standard deviations, and variable means together contain the

full information necessary to regenerate the raw data.  Note that the variable means (µ) represent variance

that could not be associated with any factors and should therefore not be used when regenerating individual

factor waveforms.
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